ZEBRAFISH AS A PROMISING MODEL FOR ATHEROSCLEROSIS : A COMPREHENSIVE STUDY
Parijat Bhadra, & Dr. Shefali Raizada
Department of Life Sciences, School of Sciences, Garden City University, Bangalore, Karnataka, India
ABSTRACT
Atherosclerosis (AS) is a chronic inflammatory disorder which occurs mainly due to accumulation of lipids in the arterial wall, ultimately leading to vascular complications. Traditional mammalian models to study Atherosclerosis (AS) poses some significant challenges due to their cost, maintenance and long experimental durations. This review explores the potential of zebrafish as a model for studying atherosclerosis (AS) and its early symptoms, which is induced by high cholesterol and high lipopolysaccharide diet. The authors in the referred articles have meticulously investigated the ease of using zebrafish to screen potential anti AS (atherosclerosis) drugs.
KEYWORDS: Atherosclerosis, High Cholesterol diet (HCD), High lipopolysaccharide diet (HLD), Zebra fish, Lipid Metabolism, Atherogenesis
Citation:
References:
- Taleb, S. (2016). Inflammation in atherosclerosis. Archives of cardiovascular diseases, 109(12), 708-715.
- Han, J., Zhang, R., Zhang, X., Dong, J., Chen, M., Pan, Y., … & Shang, J. (2021). Zebrafish model for screening antiatherosclerosis drugs. Oxidative Medicine and Cellular Longevity, 2021(1), 9995401.
- Zhu, Y., Xian, X., Wang, Z., Bi, Y., Chen, Q., Han, X., … & Chen, R. (2018). Research progress on the relationship between atherosclerosis and inflammation. Biomolecules, 8(3), 80.
- Gore, A. V., Pillay, L. M., Venero Galanternik, M., & Weinstein, B. M. (2018). The zebrafish: A fintastic model for hematopoietic development and disease. Wiley Interdisciplinary Reviews: Developmental Biology, 7(3), e312.
- Veseli, B. E., Perrotta, P., De Meyer, G. R., Roth, L., Van der Donckt, C., Martinet, W., & De Meyer, G. R. (2017). Animal models of atherosclerosis. European journal of pharmacology, 816, 3-13.
- Getz, G. S., & Reardon, C. A. (2012). Animal models of atherosclerosis. Arteriosclerosis, thrombosis, and vascular biology, 32(5), 1104-1115.
- Tang, D., Geng, F., Yu, C., & Zhang, R. (2021). Recent application of zebrafish models in atherosclerosis research. Frontiers in Cell and Developmental Biology, 9, 643697.
- Wang, H. H., Garruti, G., Liu, M., Portincasa, P., & Wang, D. Q. (2018). Cholesterol and lipoprotein metabolism and atherosclerosis: recent advances in reverse cholesterol transport. Annals of hepatology, 16(1), 27-42.
- Almeida, S. O., & Budoff, M. (2019). Effect of statins on atherosclerotic plaque. Trends in cardiovascular medicine, 29(8), 451-455.
- Liberale, L., Carbone, F., Montecucco, F., & Sahebkar, A. (2020). Statins reduce vascular inflammation in atherogenesis: a review of underlying molecular mechanisms. The international journal of biochemistry & cell biology, 122, 105735.
- Nudy, M., Cooper, J., Ghahramani, M., Ruzieh, M., Mandrola, J., & Foy, A. J. (2020). Aspirin for primary atherosclerotic cardiovascular disease prevention as baseline risk increases: a meta-regression analysis. The American journal of medicine, 133(9), 1056-1064.
- Stoletov, K., Fang, L., Choi, S. H., Hartvigsen, K., Hansen, L. F., Hall, C., … & Miller, Y. I. (2009). Vascular lipid accumulation, lipoprotein oxidation, and macrophage lipid uptake in hypercholesterolemic zebrafish. Circulation research, 104(8), 952-960.
- Fan, X., Han, J., Zhu, L., Chen, Z., Li, J., Gu, Y., … & Shang, J. (2020). Protective Activities of Dendrobium huoshanense CZ Tang et SJ Cheng Polysaccharide against High‐Cholesterol Diet‐Induced Atherosclerosis in Zebrafish. Oxidative Medicine and Cellular Longevity, 2020(1), 8365056.
- Jawien, J. (2012). The role of an experimental model of atherosclerosis: apoE-knockout mice in developing new drugs against atherogenesis. Current pharmaceutical biotechnology, 13(13), 2435-2439.
- Frostegård, J. (2013). Immunity, atherosclerosis and cardiovascular disease. BMC medicine, 11, 1-13.
- Libby, P., Ridker, P. M., & Hansson, G. K. (2011). Progress and challenges in translating the biology of atherosclerosis. Nature, 473(7347), 317-325.
- Soehnlein, O., & Swirski, F. K. (2013). Hypercholesterolemia links hematopoiesis with atherosclerosis. Trends in Endocrinology & Metabolism, 24(3), 129-136.
- Almeida, S. O., & Budoff, M. (2019). Effect of statins on atherosclerotic plaque. Trends in cardiovascular medicine, 29(8), 451-455.
- Liberale, L., Carbone, F., Montecucco, F., & Sahebkar, A. (2020). Statins reduce vascular inflammation in atherogenesis: a review of underlying molecular mechanisms. The international journal of biochemistry & cell biology, 122, 105735.
- Kim, S. M., Lim, S. M., Yoo, J. A., Woo, M. J., & Cho, K. H. (2015). Consumption of high-dose vitamin C (1250 mg per day) enhances functional and structural properties of serum lipoprotein to improve anti-oxidant, anti-atherosclerotic, and anti-aging effects via regulation of anti-inflammatory microRNA. Food & function, 6(11), 3604-3612.
- McNeil, J. J., Wolfe, R., Woods, R. L., Tonkin, A. M., Donnan, G. A., Nelson, M. R., … & Murray, A. M. (2018). Effect of aspirin on cardiovascular events and bleeding in the healthy elderly. New England Journal of Medicine, 379(16), 1509-1518.
- Morelli, M. B., Gambardella, J., Castellanos, V., Trimarco, V., & Santulli, G. (2020). Vitamin C and cardiovascular disease: an update. Antioxidants, 9(12), 1227.
- Linton, M. F., Yancey, P. G., Davies, S. S., Jerome, W. G., Linton, E. F., Song, W. L., … & Vickers, K. C. (2019). The role of lipids and lipoproteins in atherosclerosis. Endotext [Internet].
- Vasyutina, M., Alieva, A., Reutova, O., Bakaleiko, V., Murashova, L., Dyachuk, V., … & Magni, P. (2022). The zebrafish model system for dyslipidemia and atherosclerosis research: Focus on environmental/exposome factors and genetic mechanisms. Metabolism, 129, 155138.
- Sehnert, A. J., & Stainier, D. Y. (2002). A window to the heart: can zebrafish mutants help us understand heart disease in humans?. Trends in genetics, 18(10), 491-494.
- Teame, T., Zhang, Z., Ran, C., Zhang, H., Yang, Y., Ding, Q., … & Zhou, Z. (2019). The use of zebrafish (Danio rerio) as biomedical models. Animal Frontiers, 9(3), 68-77.
- Oka, T., Nishimura, Y., Zang, L., Hirano, M., Shimada, Y., Wang, Z., … & Tanaka, T. (2010). Diet-induced obesity in zebrafish shares common pathophysiological pathways with mammalian obesity. BMC physiology, 10, 1-13.
- Chen, B., Zheng, Y. M., & Zhang, J. P. (2018). Comparative study of different diets-induced NAFLD models of zebrafish. Frontiers in Endocrinology, 9, 366.
- Forn-Cuní, G., Varela, M., Fernández-Rodríguez, C. M., Figueras Huerta, A., & Novoa, B. (2015). Liver immune responses to inflammatory stimuli in a dietinduced obesity model of zebrafish.
- Landgraf, K., Schuster, S., Meusel, A., Garten, A., Riemer, T., Schleinitz, D., … & Körner, A. (2017). Short-term overfeeding of zebrafish with normal or high-fat diet as a model for the development of metabolically healthy versus unhealthy obesity. Bmc Physiology, 17, 1-10.
- Fang, L., & Miller, Y. I. (2012). Emerging applications for zebrafish as a model organism to study oxidative mechanisms and their roles in inflammation and vascular accumulation of oxidized lipids. Free Radical Biology and Medicine, 53(7), 1411-1420.
- MacRae, C. A., & Peterson, R. T. (2015). Zebrafish as tools for drug discovery. Nature reviews Drug discovery, 14(10), 721-731.
- Vedder, V. L., Aherrahrou, Z., & Erdmann, J. (2020). Dare to compare. Development of atherosclerotic lesions in human, mouse, and zebrafish. Frontiers in cardiovascular medicine, 7, 109.
- Stoletov, K., Fang, L., Choi, S. H., Hartvigsen, K., Hansen, L. F., Hall, C., … & Miller, Y. I. (2009). Vascular lipid accumulation, lipoprotein oxidation, and macrophage lipid uptake in hypercholesterolemic zebrafish. Circulation research, 104(8), 952-960.
- Jawien, J., Nastalek, P., & Korbut, R. (2004). Mouse models of experimental atherosclerosis. Journal of physiology and pharmacology, 55(3), 503-517.
- Asnani, A., & Peterson, R. T. (2014). The zebrafish as a tool to identify novel therapies for human cardiovascular disease. Disease models & mechanisms, 7(7), 763-767.
- Asnani, A., & Peterson, R. T. (2014). The zebrafish as a tool to identify novel therapies for human cardiovascular disease. Disease models & mechanisms, 7(7), 763-767.
- Bowley, G., Kugler, E., Wilkinson, R., Lawrie, A., van Eeden, F., Chico, T. J., … & Serbanovic‐Canic, J. (2022). Zebrafish as a tractable model of human cardiovascular disease. British Journal of Pharmacology, 179(5), 900-917.
- Liu, C. C., Li, L., Lam, Y. W., Siu, C. W., & Cheng, S. H. (2016). Improvement of surface ECG recording in adult zebrafish reveals that the value of this model exceeds our expectation. Scientific reports, 6(1), 25073.
- Al-Habsi, A. A., Massarsky, A., & Moon, T. W. (2016). Exposure to gemfibrozil and atorvastatin affects cholesterol metabolism and steroid production in zebrafish (Danio rerio). Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 199, 87-96.
- Liberale, L., Carbone, F., Montecucco, F., & Sahebkar, A. (2020). Statins reduce vascular inflammation in atherogenesis: a review of underlying molecular mechanisms. The international journal of biochemistry & cell biology, 122, 105735.
- Fang, L., & Miller, Y. I. (2012). Emerging applications for zebrafish as a model organism to study oxidative mechanisms and their roles in inflammation and vascular accumulation of oxidized lipids. Free Radical Biology and Medicine, 53(7), 1411-1420.
VLEARNY Journal of Biological Sciences
1 (1) 2024, 19-27, https://vlearny.com/vjbs/
© VLERNY Technology LLP.