Have a question?
name
email
mobile number
query
Delete file
Are you sure you want to delete this file?
Message sent Close

 

Rishant Tiwari

Department of Life Sciences, School of Sciences,
Garden City University, Bangalore, Karnataka, India;

 

Dr. Shefali Raizada*

Assistant Professor, Department of Life Sciences, School of Sciences,
Garden City University, Bangalore, Karnataka, India; shefali.raizada@gcu.edu.in

 

Abstract:

Zebrafish (Danio rerio) has become a model organism more extensively utilized than most in the field of biological research, drastically changing the study of genetics, developmental biology, and disease (Knaut et al., 2003; Howe et al., 2013; Kimmel et al., 1995). Originally endemic to the freshwater streams of South Asia, zebrafish have become extremely popular in the scientific communities of the world because of their incredible genetic similarities to human beings, rapid development, clear embryos, and facile genetic manipulation (Westerfield, 2000; Gering et al., 2017). The benefits of research with zebrafish, added to their particular biological features, have turned them into an invaluable tool for examining numerous physiological processes, such as organogenesis, disease development, and drug testing (Plank et al., 2009; Patton et al., 2005).

Keywords:

Zebrafish, model organism, genetics, developmental biology, disease modeling, CRISPR-Cas9, transparency, drug testing, cancer models, and human diseases.

Citation of this paper: Tiwari, R., & Raizada, S. (2025). ZEBRAFISH AS A MODEL ORGANISM: A TREASURED ASSET IN BIOLOGICAL RESEARCH. VLEARNY Journal of Biological Sciences, 1(1), 39–44. https://doi.org/10.5281/zenodo.15044209

 

References:

  1. Howe K, Clark MD, Torroja CF, et The zebrafish reference genome sequence and its relationship to the human genome. Nature. 2013;496(7446):498-503.
    1. doi:10.1038/nature12111
  2. Hwang WY, Fu Y, Reyon D, et Efficient genome editing in zebrafish using a CRISPR- Cas system. Nature Biotechnology. 2013;31(3):227-229. doi:10.1038/nbt.2501
  3. Sprague The Zebrafish Information Network: the zebrafish model organism database. Nucleic Acids Research.
    1. 2005;34(90001):D581-D585.
    2. doi:10.1093/nar/gkj086
  4. Ruzicka L, Bradford YM, Frazer K, et ZFIN, The zebrafish model organism database: Updates and new directions. Genesis. 2015;53(8):498-509.
    1. doi:10.1002/dvg.22868
  5. Howe DG, Bradford YM, Conlin T, et ZFIN, the Zebrafish Model Organism Database: increased support for mutants and transgenics. Nucleic Acids Research. 2012;41(D1):D854-D860.
    1. doi:10.1093/nar/gks938
  6. Asharani PV, Wu YL, Gong Z, Valiyaveettil Toxicity of silver nanoparticles in zebrafish models. Nanotechnology. 2008;19(25):255102. doi:10.1088/0957- 4484/19/25/255102
  7. Hruscha A, Krawitz P, Rechenberg A, et Efficient CRISPR/Cas9 genome editing with low off-target effects in zebrafish. Development. 2013;140(24):4982-4987. doi:10.1242/dev.099085
  8. Kimmel, C. B., Ballard, W. W., Kimmel, S. R., Ullmann, B., & Schilling, T. F. (1995). Stages of embryonic development of the Developmental Dynamics, 203(3), 253– 310.
    1. https://doi.org/10.1002/aja.1002030302
  1. Arias-Jayo , Abecia L., Alonso-Sáez L., Ramirez-Garcia A., Rodriguez A., and Pardo M.A.. 2018. High-fat diet consumption induces microbiota dysbiosis and intestinal inflammation in zebrafish. Microb. Ecol. 76:1089–1101.
    1. doi: 10.1007/s00248-018-1198-9
  2. Avdesh A., Chen M., Martin-Iverson M.T., Mondal A., Ong D., Rainey-Smith S., K. Taddei, M. Lardelli, D.M. Groth, G. Verdile, and R.N. Martins. 2012. Regular care and maintenance of a Zebrafish (Danio rerio) laboratory: an J. Vis. Exp. 69:e4196, doi: 10.3791/4196
  3. Bates M., Akerlund J., Mittge E., and Guillemin K.. 2007. Intestinal alkaline phosphatase detoxifies lipopolysaccharide and preventsinflammation in zebrafish in response to the gut microbiota. Cell Host Microbe 2:371–382.
    1. doi: 1016/j.chom.2007.10.010
  4. Brugman 2016. The zebrafish as a model to study intestinal inflammation. Dev. Comp. Immunol. 64:82–92.
    1. doi: 1016/j.dci.2016.02.020
  5. Burger , Lindsay H., Felker A., Hess C., Anders C., Chiavacci E., Zaugg J., Weber L.M., Catena R., Jinek M., . et al. 2016. Maximizingmutagenesis with solubilized CRISPR-Cas9 ribonucleoprotein complexes. Development, 143(11):2025–2037
    1. doi: 1242/dev.134809
  6. Capiotti K.M., Antonioli R. Jr, Kist L.W., Bogo M.R., Bonan C.D., and Da Silva R.S.. 2014. Persistent impaired glucose metabolism in a Zebrafish hyperglycaemia model. Comp. Biochem. Physiol. B. Biochem. Mol. Biol. 171:58–65.
    1. doi: 1016/j.cbpb.2014.03.005
  7. Castranova , Lawton A., Lawrence C., Baumann D.P., Best J., Coscolla J., Doherty A., Ramos J., Hakkesteeg J., Wang C., et al. 2011. The effect of stocking densities on reproductive performance in laboratory zebrafish (Danio rerio). Zebrafish 8:141–146. doi: 10.1089/zeb.2011.0688
  8. Chen , Zheng Y.M., and Zhang J.P.. 2018. Comparative study of different diets-induced NAFLD models of zebrafish. Front. Endocrinol. (Lausanne). 9:366.
    1. doi: 3389/fendo.2018.00366
  9. Clark K.J., and Ekker C 2015. How zebrafish genetics informs human biology. Nat.
    1. 8(4):3.
  10. Connaughton V.P., Baker C., Fonde L., Gerardi E., and Slack C.. 2016. Alternate immersion in an external glucose solution differentiallyaffects blood sugar values in older versus younger zebrafish adults. Zebrafish 13:87–94.
    1. doi: 1089/zeb.2015.1155
  11. Eames S.C., Philipson L.H., Prince V.E., and Kinkel M.D.. 2010. Blood sugar measurement in zebrafish reveals dynamics of glucose Zebrafish 7:205–213. doi: 10.1089/zeb.2009.0640
  12. Fang L., and Miller Y.I Emerging applications for zebrafish as a model organism to study oxidative mechanisms and their roles in inflammation and vascular accumulation of oxidized lipids. Free Radic. Biol. Med. 53:1411–1420.
    1. doi: 1016/j.freeradbiomed.2012.08.004
  13. Forn-Cuní , Varela M., Fernández-Rodríguez C.M., Figueras A., Novoa B 2015. Liver immune responses to inflammatory stimuli in a diet- induced obesity model of zebrafish. J Endocrinol 224:159–170.
    1. doi: 1530/JOE-14-0398
  14. Gleeson M., Connaughton V., and Arneson L.S.. 2007. Induction of hyperglycaemia in zebrafish (Danio rerio) leads to morphological changes in the retina. Acta Diabetol. 44:157–163.
    1. doi: 10.1007/s00592-007-0257-3
  15. Gonzales J.M., Jr, and Law S.H. 2013. Feed and feeding regime affect growth rate and gonadosomatic index of adult zebrafish (Danio rerio). Zebrafish 10:532–540.
    1. doi: 1089/zeb.2013.0891
  16. Gut , Reischauer S., Stainier D.Y.R., and Arnaout R 2017. Little fish, big data: zebrafish as a model for cardiovascular and metabolic disease. Physiol. Rev. 97:889–938.
    1. doi: 1152/physrev.00038.2016
  17. Howarth D.L., Yin C., Yeh K., and Sadler K.C.. 2013. Defining hepatic dysfunction parameters in two models of fatty liver disease in zebrafish Zebrafish 10:199–210. doi: 10.1089/zeb.2012.0821
  18. Howe K., Clark M.D., Torroja C.F., Torrance J., Berthelot C., Muffato M., Collins J.E., Humphray S., McLaren , Matthews L., et al.2013. The zebrafish reference genome sequence and its relationship to the human genome. Nature 496:498–503.
    1. doi: 1038/nature12111
  19. Imran M., Sergent O., Tete A., Gallais I., Chevanne M., Lagadic-Gossmann D., and Podechard 2018. Membrane remodeling as a keyplayer of the hepatotoxicity induced by co-exposure to benzo[a]pyrene and ethanol of obese zebrafish larvae. Biomolecules 8:26.
    1. doi: 3390/biom8020026
  20. Ji , Thwaite R., and Roher N……………….. 2018. Oral intubation of adult zebrafish: a model for
    1. evaluating intestinal uptake of bioactive J. Vis. Exp. 139:e58366.
  21. Kimmel A., Dobler S., Schmitner N., Walsen T., Freudenblum J., and Meyer D. 2015. Diabetic pdx1-mutant zebrafish show conservedresponses to nutrient overload and anti- glycemic treatment. Sci. Rep. 5:14241.
    1. doi: 1038/srep14241
  22. Koch E.V., Yang S., Lamers G., Stougaard J., and Spaink H.P 2018. Intestinal
    1. microbiome adjusts the innate immune setpoint during colonization through negative regulation of myd88. Nat. Commun. 9:4099.
    2. doi: 10.1038/s41467-018-06658-4
  1. Kostic D., Howitt M.R., and Garrett W.S 2013. Exploring host-microbiota interactions in animal models and humans. Genes Dev. 27:701–718.
    1. doi: 1101/gad.212522.112
  2. LaBrecque D.R., Abbas Z., Anania F., Ferenci P., Khan A.G., Goh K.L., Hamid S.S., Isakov V., Lizarzabal M., Peñaranda M.M., . et al. 2014. World gastroenterology organisation global guidelines: nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. J. Clin. Gastroenterol. 48(6):467–473.
  3. Landgraf K., Schuster S., Meusel A., Garten A., Riemer T., Schleinitz D., Kiess W., and Körner . 2017. Short-term overfeeding of zebrafish with normal or high-fat diet as a model for the development of metabolically healthy versus unhealthy obesity. BMC
    1. 17:4.
    2. doi: 10.1186/s12899-017-0031-x
  4. Lozano R., Naghavi , Foreman K., Lim S., Shibuya K., Aboyans V., Abraham J., Adair T., Aggarwal R., Ahn S.Y., et al. 2012. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the global burden of disease study 2010. Lancet 380:2095–2128.
    1. doi: 10.1016/S0140-6736(12)61728-0
  5. Marín-Juez , Jong-Raadsen S., Yang S., and Spaink H.P 2014. Hyperinsulinemia
    1. induces insulin resistance and immune suppression via Ptpn6/Shp1 in zebrafish. J. Endocrinol. 222:229–241.
    2. doi: 1530/JOE-14-0178
  6. Minchin J.E.N., Scahill C.M., Staudt N., Busch-Nentwich E.M., and Rawls J.F.. 2018. Deep phenotyping in zebrafish reveals genetic and diet-induced adiposity changes that may inform disease risk. J. Lipid Res. 59:1536–1545.
    1. doi: 1194/jlr.D084525
  7. Miyares L., de Rezende V.B., and Farber S.A.. 2014. Zebrafish yolk lipid processing: a tractable tool for the study of vertebrate lipidtransport and metabolism. Dis. Model. Mech. 7:915–927.
    1. doi: 1242/dmm.015800
  8. Ng M., Flerning T., Robinson M., Thornson B., Graetz N., Margono C., Mvllany E.C., Biryvkov , Abbafati S., Abera S.F., . et al. 2014. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980-2013: a systematic analysis for the Global Burden of Disease Study 2013. The Lancet, 384(9945):766–781.
    1. doi: 10.1016/S0140-6736(14)60460-8
  9. Nishio , Gibert Y., Berekelya L., Bernard L., Brunet F., Guillot E., Le Bail J.C., Sánchez J.A., Galzin A.M., Triqueneaux G., et al. 2012. Fastinginduces CART down-regulation in the zebrafish nervous system in a cannabinoid receptor 1-dependent manner. Mol. Endocrinol. 26:1316–1326.
    1. doi: 1210/me.2011-1180
  10. Oehlers S.H., Flores M.V., Okuda K.S., Hall J., Crosier K.E., and Crosier P.S.. 2011a. A chemical enterocolitis model in zebrafish larvae that is dependent on microbiota and responsive to pharmacological agents. Dev. Dyn. 240:288–298.
    1. doi: 1002/dvdy.22519
  11. Oka T., Nishimura Y., Zang L., Hirano M., Shimada Y., Wang Z., Umemoto N., Kuroyanagi J., Nishimura N., and Tanaka T.. 2010. Diet-induced obesity in zebrafish shares common pathophysiological pathways with mammalian obesity. BMC Physiol. 10:21.
    1. doi: 1186/1472-6793-10-21
  12. Olsen S., Sarras M.P., Leontovich A., and Intine R.V. 2012. Heritable transmission of diabetic metabolic memory in zebrafish correlates with DNA hypomethylation and aberrant gene expression. Diabetes 61:485–491.
    1. doi: 2337/db11-0588
  1. Passeri J., Cinaroglu A., Gao C., and Sadler K.C 2009. Hepatic steatosis in response to acute alcohol exposure in zebrafish requires sterol regulatory element binding protein activation. Hepatology 49:443–452.
    1. doi: 1002/hep.22667
  2. Ribas L., and Francesc P 2014. The zebrafish (Danio rerio) as a model organism, with emphasis on applications for finfish aquaculture research. J. Rev. Aquac. 6(4):209–240.

 

VLEARNY Journal of Biological Sciences
1 (1) 2024, 4-14, https://vlearny.com/vjbs/
© VLERNY Technology LLP.

This website uses cookies and asks your personal data to enhance your browsing experience.